Polynomial Rings over Goldie Rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Rings over Pseudovaluation Rings

Let R be a ring. Let σ be an automorphism of R. We define a σ-divided ring and prove the following. (1) Let R be a commutative pseudovaluation ring such that x ∈ P for any P ∈ Spec(R[x,σ]) . Then R[x,σ] is also a pseudovaluation ring. (2) Let R be a σ-divided ring such that x ∈ P for any P ∈ Spec(R[x,σ]). Then R[x,σ] is also a σ-divided ring. Let now R be a commutative Noetherian Q-algebra (Q i...

متن کامل

Goldie Conditions for Ore Extensions over Semiprime Rings

Let R be a ring, σ an injective endomorphism of R and δ a σderivation of R. We prove that if R is semiprime left Goldie then the same holds for the Ore extension R[x;σ, δ] and both rings have the same left uniform dimension.

متن کامل

Gray Images of Constacyclic Codes over some Polynomial Residue Rings

Let  be the quotient ring    where  is the finite field of size   and  is a positive integer. A Gray map  of length  over  is a special map from  to ( . The Gray map   is said to be a ( )-Gray map if the image of any -constacyclic code over    is a -constacyclic code over the field   . In this paper we investigate the existence of   ( )-Gray maps over . In this direction, we find an equivalent ...

متن کامل

Modules over Differential Polynomial Rings

This note announces a number of results on the structure of differential modules over differential rings, where differential ring means a ring with a family of derivations and differential module means a module having a family of operators compatible with the derivations of the ring. To fix notation, throughout the paper we let A denote an associative ring, M = AM an 4-module, k the correspondi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2001

ISSN: 0021-8693

DOI: 10.1006/jabr.2000.8574